Course Plan

FMTC0302/Rev.1.0

Semester: VII		Year: 2022-23
Course Title: POWER SYSTEM ANALYSIS – 2		Course Code: 18EE71
Total Contact Hours: 50		Duration of USE: 03 Hour
USE Marks: 60		IA Marks: 40
Lesson Plan Author: Mallikarjun G Hudedmani	J-1CU-2	Date: 20-09-2022
Checked By: Dr. Vinoda S	VErman	Date: 24-09-2022

Prerequisites

The subject requires the student to possess good knowledge of network analysis, operations related to matrices, numerical analysis, power system analysis-1 and knowledge of computer programming.

Course Learning Outcomes-(CO)

At the end of the course student will be able to

- i. Formulate network matrices and models for solving load flow problems
- ii. Perform steady state power flow analysis of power systems using numerical iterative Techniques
- iii. Solve issues of economic load dispatch and unit commitment problems
- iv. Analyze short circuit faults in power system networks using bus impedance matrix
- v. Perform numerical solution of swing equation using Point by Point method and Runge Kutta Methods

Semester: VII

Course Articulation Matrix: Mapping of Course Learning Outcomes (CO) with Program outcomes

Course Title: POWER SYSTEM ANALYSIS – 2

Course code: 18EE71 Year:2022-23

	1	2	3	4	5	6	7	8	9	10	11	12
Course Learning Outcomes-CO	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning
i Formulate network matrices and models for solving load flow problems.	3	2	2		2				2	1		
 ii Perform steady state power flow analysis of power systems using numerical iterative techniques 	2	2	2	1	2				2	1		2
iii Solve issues of economic load dispatch and unit commitment problems	2	2	2	2	2			2	2	1		2
iv Analyze short circuit faults in power system networks using bus impedance matrix	2	3	2	2	3			2	2	1		3
 v Perform numerical solution of swing equation using Point by Point method and Runge Kutta Methods 	2	2	2		3			1	2	1		2
 iv Analyze short circuit faults in power system networks using bus impedance matrix v Perform numerical solution of swing equation using Point by Point method and Runge Kutta Methods 	2 2	3	2	2	3			2	2	1		3

Degree of compliance 1: Slight 2: Moderate 3: Substantial

Course Articulation Matrix: Mapping of Course Learning Outcomes (CO) with Program specific outcomes (PSO)

Course Title: **POWER SYSTEM ANALYSIS** – 2 Semester: VII Course code: 18EE71 Year: 2022-23

CO's	PSO 1	PSO 2	PSO 3
i Formulate network matrices and models for solving load flow problems.	1	2	2
 ii Perform steady state power flow analysis of power systems using numerical iterative techniques 	2	2	2
iii Solve issues of economic load dispatch and unit commitment problems	1	2	2
iv Analyze short circuit faults in power system networks using bus impedance matrix	2	2	2
 v Perform numerical solution of swing equation using Point by Point method and Runge Kutta Methods 	2	2	2

Degree of compliance 1: Slight 2: Moderate 3: Substantial.

Course Content

Course C	Code: 18EE71	Course Title: POWER SY	STEM ANALYSIS – 2				
L-T-P: 4	-0-0	Teaching Hrs: 50	Exam Duration: 03				
IA Marks	: 40	USE Marks: 60	Total Marks: 100				
		Content					
Module		Load Flow Studies		Hrs			
1	Network Topology : Introduction and basic definitions of Elementary graph theory Tree, cut- set, loop, analysis. Formation of Incidence Matrices. Primitive network- Impedance form and admittance form, Formation of Y Bus by Singular Transformation. Ybus by Inspection Method. Illustrative examples.						
		Load Flow Studies					
2	Load Flow Studies: Introduction, Classification of buses. Power flow equation, Operating Constraints, Data for Load flow, Gauss Seidal iterative method. Illustrative examples.						
	Load Flow Studies						
3	Load Flow Studies(continue Fast decoupled load flow meth Flow Methods. Illustrative exa	d) Newton-Raphson method nod, Flow charts of LFS met amples.	l derivation in Polar form, thods. Comparison of Load	10			
		Optimal System Operation					
4	Economic Operation of Power System: Introduction and Performance curves Economic generation scheduling neglecting losses and generator limits Economic generation scheduling including generator limits and neglecting losses Economic dispatch including transmission losses Derivation of transmission loss formula. Illustrative examples. Unit Commitment: Introduction, Constraints and unit commitment solution by prior						
	Symmetrical Fa	ault Analysis and Power Sys	tem Stability				
5	Z Bus Formulation by Step between the elements by a examples on .Z bus Algorithm	by step building algorithm ddition of link and addit for Short Circuit Studies ex	n without mutual coupling ion of branch. Illustrative scluding numerical.	10			

Text book

- 1 Modern Power System Analysis by D. P. Kothari McGraw Hill 4th Edition, 2011
- 2 Computer Methods in Power Systems Analysis by Glenn W Stagg, Ahmed H Ei Abiad, Scientific International Pvt. Ltd. 1st Edition, 2019
- 3 Power Generation Operation and Control by Allen J Wood etal, Wiley, 2nd Edition,2016

Reference Books

- 1 Computer Techniques in Power System Analysis M.A. Pai McGraw Hill 2nd Edition, 2012
- 2 Power System Analysis Hadi Saadat McGraw Hill 2nd Edition, 2002

Evaluation Scheme

IA Exam Scheme

Assessment	Weightage in Marks	
Internal Assessment 1		10
Internal Assessment 2		10
Internal Assessment 3.		10
Total I.A. Marks		30
Unit Test & Assignment Marks		10
Average of Highest of two	Total (max)	40

Course Unitization for Internal Assessment Exams and University Semester Examination

Madula	Chapter	Teaching	No.	of Questio	No. of Questions	
woule	Chapter	Hours	IA I	IA 2	IA 3	in USE
I	Network Topology	10	1			1
II	Load Flow Studies	10	1	1		1
III	Load Flow Studies	10		1		1
IV	Optimal System Operation	10			1	1
V	Symmetrical Fault Analysis and Power System Stability	10			1	1

Note:

For I.A :

- Each IA is conducted for 40 marks and reduced to 10 marks.
- 3 unit test are conducted (Any 3 Modules)
- 2 Assignments (Any 2 modules)
- 3 Questions carrying 20 marks each and up to 3 sub questions are allowed.
- Answer any 2 full questions of 20 marks each (*Two full questions from Q1,Q2 and Q3*)

For U.S.E :

- The question paper will have 10 questions. Two questions from each module.
- Students need to answer 5 full questions completely, selecting one question from each module.
- Each question carries 20 marks.

Vienne

Head of Department

Date: 24-09-2022

Chapter wise Plan

Course Code and Title: 18EE71 POWER SYSTEM ANALYSIS – 2

Chapter Number and Title: 1. NETWORK TOPOLOGY Planned Hours: 10

Learning Outcomes:

At the end of the topic student should be able to:

SI.No	TLO's	CO's	ΒL
1	Define elementary graph theory – oriented graph, tree, co-tree, basic cut- sets, basic loops; Incidence matrices.	i	L1
2	Define and distinguish primitive network elements.	I	L2
3	Obtain and prove the relationship between the different matrices.	i	L2
4	Obtain Y_{BUS} – by method of singular transformation and Inspection method	i	L3
5	Solve problems related to various matrices of graph.	i	L3

Lesson Schedule

Class No. Portion covered per hour

- 1. Introduction to elementary graph theory, Incidence matrices.
- 2. Oriented graph, tree, co-tree
- 3. Basic cut-sets, basic loops.
- 4. Element-node, bus incidence, Tree-branch path, basic cut-set.
- 5. Augmented cut-set, basic loop and augmented loop.
- 6. Primitive network in impedance form and admittance form.
- 7. Formation of Y_{BUS} by method of singular transformation ($Y_{BUS} = A^T y A$).
- 8. Formation of Y_{BUS} by method of Inspection.
- 9. Solution of Numerical problems.
- 10. Solution of Numerical problems.

Review Questions

SI.No	Questions	TLO	ΒL
1	Define and explain the following: i) Oriented graph ii) Tree iii) Co-tree iv) Basic cut-sets v) Basic loops vi) Incidence matrices.	1	L1
2	What is primitive network ? Explain its significance with a circuit and equations of it both in impedance form and admittance form.	2	L2
3	Obtain For the basic cut set matrix B for the above problem show that $A_i = B_i A_i$	3	L3
4	Explain and obtain Y_{BUS} matrix – by method of inspection in general.	4	L2
5	Explain and obtain Y_{BUS} matrix – by singular transformation method with suitable example.	4	L3

-		1
Г	7	
L.	/	1

	The bus incidence matrix of a 7 element, 5 node system is shown below. Obtain the element node incidence matrix. Hence draw the corresponding												
	oriented grap	h sy	stem.	mon	Jence	matri	A. 110	ince			corresponding		
6		A	1	0	0	-1	0		0	1		5	13
Ŭ		В	-1	-1	-1	0	0		0	0		Ŭ	20
	A =	С	0	0	1	0	-	1	1	0			
		D	0	0	0	0	0		-1	-1	-		
	For the syste	m d	lefined b	y th	e line	data	shov	/n b	elow,	det	ermine the bus		
	admittance m	atrix	cusing si	ingul	ar trai	nsform	natior	n an	alysis				
		Γ	ine No		1	2	3	4	. 5				
7				۵		-	2-3	3	-0 2	2-0		5	L3
		r F	Dus 000	0	01	12	2.0			. 0			
		4	Admittan	се	1.4	1.6	2.4	2	.0 1	.8			
		i	n pu										
	For the given	pov	wer syste	em c	btain	А, В а	and C	m	atrices	s an	d assume G as		
8	reference		Α.		£	>						5	13
Ũ											Ŭ	20	
	ILEB 4	1	1-23	-	F								
	For the syster	n sh	nown obt	ain A	A ,B,C	and k	< mat	rice	S				
•											_		
9	2 4 5										5	L3	
	© ©												
	Obtain D and	<u> </u>		o r 46			into d						
	Obtain B and		atrices f	or th	e give	en orie	entea	gra	pn				
10	o · · · · · · · · · · · · · · · · · · ·		5)@	-	, ©							5	L3
		it	1-1	j.									
			\checkmark										
	The bus incid	enc	e matrix	is g	iven b	elow	and o	Iraw	the o	orier	ited graph and		
11	augmented in	cide -1	o 0	rix 1								F	1.2
11	0 0 0 1	0	0 -1	-1								5	L3
	0 1 0 0	1	1 0	0									
12	Obtain A, B.	C,K	and au	u ame	nted A	А, В. С	Cmat	rice	s for t	he (example below.	5	13
12	· · · , _ ,	, -				, ,						5	LJ

Course Code and Title: 18EE71 POWER SYSTEM ANALYSIS – 2

Module : 2. Load Flow Studies

Planned Hours: 10

Learning Outcomes:

At the end of the topic student should be able to:

SI.No	TLO's	CO's	ΒL
1	Justify the need for the load flow and list various constraints related to load flow	i	L1
2	Obtain mathematical formulations for the load flow study	ii	L2
3	Obtain the solution of nonlinear static load flow equations by different numerical techniques	ii	L3

Lesson Schedule

Class No. Portion covered per hour

- 1. Introduction to Load flow
- 2. Net work model formulation, Complex power, Net work graph, Tree and relationship
- 3. Load flow problem, bus classification
- 4. Constraints in load flow study
- 5. Data for load flow study
- 6. Gauss seidel method of solution of Load flow
- 7. Algorithm for GSLF, Acceleration of convergence
- 8. Modification of algorithm for PV buses
- 9. Solution of Numerical problems.
- 10. Solution of Numerical problems.

SI.No	Questions	TLO	ΒL
1	Define and justify necessity of load flow study.	1	L1
2	Generate mathematical equations related to load flow study.	1	L2
3	List and brief various constraints related to load flow study.	1	L2
4	List and brief various data required for the load flow study.	1	L2
5	Obtain the solution of nonlinear static load flow equations by different numerical techniques	2	L2
6	Define and justify the necessity of Load flow study and classify the buses in order to carry out load flow analysis in power system	2	L2

7	With the help of a flow chart and equations explain the Gauss-seidel method for load flow analysis with P-Q and P-V buses	2	L2
8	Using G-S load flow procedure determine the bus voltages at the end of first iteration. All the line datas are in impedance form. $\begin{array}{c c} & & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline \hline & & \\ \hline \hline \hline & & \\ \hline \hline \hline \\ \hline \hline \hline & & \\ \hline \hline \hline \hline$	3	L3
9	Using GS load flow solve for the voltages at the end of first iteration. All the buses are PQ except bus 1. Table Line Data Table Bus Data S.B E.B $R_{(p,u)}$ $X_{(p,u)}$ 1 Table Bus Data Bus No. $P_{ip,u}$ V_i 1 2 0.05 0.15 1 - 1.04∠0° 2 0.5 -0.2 - 3 - 1.0 0.5 - 3 - 1.0 0.5 - 3 - 0.1 - - 1.04∠0° 2 0.5 - 0.1 - - 1.04∠0° 2 0.5 - 0.1 - - 1.04∠0° 2 0.5 - - 1.04∠0° 2 0.5 - 3 - 0.1 - - 1.04∠0° 2 0.5 - 3 - 0.1 - - 1.04∠0° 2 0.5 - 3 - 0.1 - - 1.04∠0° 2 0.1	3	L3
10	Using GS load flow obtain equations of the voltages at the end of first iteration	3	L3
11	Using GS load flow solve for the voltages at the end of first iteration, Use flat start. $ \begin{array}{c c} \hline & Z_{12} \\ \hline & Z_{23} \\ \hline & (0.04 + j 0.06) pu \\ \hline & (0.02 + j 0.03) gu \\ \hline & Bus \end{array} $	3	L3

Course Code and Title: 18EE71 POWER SYSTEM ANALYSIS – 2

Module : 2. Load Flow Studies

Planned Hours: 10

Learning Outcomes:

At the end of the topic student should be able to:

SI.No	TLO's	CO's	ΒL
1	Explain and formulate network matrices for solving load flow problems.	i	L2
2	Obtain the solution of nonlinear static load flow equations by different numerical techniques	ii	L3
3	Compare and contrast different methods.	ii	L3

Lesson Schedule

Class No. Portion covered per hour

- 1. Introduction to Newton Raphson load flow study
- 2. Algorithm and iterative solution
- 3. Rectangular power mismatches
- 4. Load flow solutions using NRLF
- 5. Decoupled load flow and FDLF
- 6. FDLF Algorithm
- 7. Load flow solutions using FDLF
- 8. Comparison of load flow methods
- 9. Control of voltage and solution of a problem
- 10. Solution of numerical problems.

SI.No	Questions	TLO	ΒL
1	With the help of a flow chart and equations explain the Newton Raphson method for load flow analysis with P-Q and P-V buses	1	L2
2	Discus briefly the significance and properties of Jacobian Matrix of the Newton Raphson method for load flow analysis.	2	L2
3	Explain the procedure of Fast Decoupled load flow analysis with the help of flow chart.	2	L2
4	Compare the load flow methods with standard features	3	L2

5	In the two-bus 0 pu. A load admittance is value of volta iteration. Use	system of 150 (12= 10 ge and NRLF.	shown in DMWand $x^{-73.74^{0}}$ p delta val	Figure , k 50 Mvar u on a b ue for bus	ous 1 is is take ase of 2 after	a slack n from 100 MV/ one → 15 → 50	bus with bus 2. A. Cale 0 MW Mvar	h V_1 =1.0 The line culate the	3	L3
	Using NR load buses are PQ	l flow so except l	lve for the ous 1.	voltages	at the e	nd of firs	st iteratio	on. All the		
	Table	Line D	ata		Table B	us Data				
C	S.B E.B	R _(p,u)	X _(p.u)	Bus No.	P _{i(p.u)}	$Q_{i_{(p,u)}}$	Vi		2	1.0
0		0.05	0.15	1			1.04Z0°		3	L3
	1 3	0.1	0.3	2	0.5	-0.2	+			
	2 3	0.15	0.45	3	-1.0	0.5				
	3 4	0.05	0.15	4	-0.3	-0.1				
7	Using NR load first iteration. T	d flow p ake flat	rocedure of start and	determine assume s	the bu uitable f Line om bus to b 1-2 1-3 2-3 2-4 3-4	s voltag nissing o data table us R in Pv 0.05 0.10 0.15 0.10 0.05	es at th data X in Pv 0.15 0.30 0.45 0.30 0.15	ne end of	3	L3

Slack E	the sol	utions of v	voltage magnitude a	nd delta for t	he bu: idel m	ses ethod			
Dues	-	_	-				- I		
Busc	ode	G	eneration		load			З	13
Busc	ode	G MW(pu)	MVAR(pu)	MW(pu)	load MV	/AR(pu)		3	L3
Busc	ode	G MW(pu) 	MVAR(pu)	MW(pu)	load MV	/AR(pu) 0		3	L3
1 2	code	G MW(pu) 	eneration MVAR(pu) 0.30	MW(pu) 0 3.056	Ioad MV	/AR(pu) 0 1.402	-	3	L3
Визс 1 2 3		G MW(pu) 0.50 0	MVAR(pu) 0.30 0	MW(pu) 0 3.056 1.386	Ioad MV	/AR(pu) 0 1.402 0.452		3	L3
Виsс 1 2 3		G MW(pu) 0.50 0 Line	MVAR(pu) 	MW(pu) 0 3.056 1.386 Bus	Ioad MV	/AR(pu) 0 1.402 0.452 Bus	- - -	3	L3
1 2 3	ode	G MW(pu) 0.50 0 Line	eneration MVAR(pu) 0.30 0 e Data Ypq (mho)	MW(pu) 0 3.056 1.386 Bus code		/AR(pu) 0 1.402 0.452 Bus Voltage	-	3	L3
1 2 3	p	G MW(pu) 0.50 0 Line -q -2	eneration MVAR(pu) 0.30 0 2 Data Ypq (mho) 10-j 20	MW(pu) 0 3.056 1.386 Bus code 1(slac	load MV	/AR(pu) 0 1.402 0.452 Bus Voltage 1.05+j0		3	L3
Виsс 1 2 3	p	G MW(pu) 0.50 0 Line -q -2 -3	ieneration MVAR(pu) 0.30 0 0 2 Data Ypq (mho) 10-j 20 10-j 30	MW(pu) 0 3.056 1.386 Bus code 1(slac 2 F	load MV k)	/AR(pu) 0 1.402 0.452 Bus Voltage 1.05+j0 1+i0		3	L3

Course Code and Title: 18EE71 POWER SYSTEM ANALYSIS – 2	
Module : 3. Optimal System Operation	Planned Hours: 10

Learning Outcomes:

At the end of the topic student should be able to:

SI.No	TLO's	CO's	ΒL
1	Explain optimal operation of generators on a bus bar and associated considerations and able to understand performance curves.	iii	L2
2	Explain optimal unit commitment and reliability of power system	iii	L3
3	Solve numerical problems related to optimal operation of generators	iii	L3

Class No. Portion covered per hour

- 1. Introduction to Economic operation of power system. Performance curves Characteristic curves and cost generation
- 2. Formulation of Economic generation scheduling neglecting losses and generator limits Optimal unit commitment and Dynamic programming method
- 3. Economic generation scheduling including generator limits and neglecting losses Reliability and security constrained optimal unit commitment
- 4. Economic Dispatch including transmission losses Derivation of transmission loss formula and finding loss coefficients
- 5. Derivation of transmission loss formula
- 6. Unit Commitment, Constraints in Unit Commitment
- 7. Unit Commitment solution by Priority lists method
- 8. Unit Commitment solution by Dynamic Programming method (Flow chart and Algorithm only)
- 9. Numerical solution of problems related to Economic operation of power system
- 10. Numerical solution of problems related to Economic operation of power system

SI.No	Questions	TLO	ΒL
1	What is the necessity of economic operation and performance curves of thermal systems.	1	L1
2	Explain unit commitment related to thermal units	2	L2
3	Define EIC- equal incremental cost criteria related to thermal units and its importance in economic operation.	2	L2
4	Explain economic scheduling up of thermal unit with different sub cases.	2	L2
5	Explain Dynamic programming with the help of flow chart	2	L2
6	Incremental fuel costs in rupees per MWh for a plant consisting of two units are : dc1 / dPG1 = 0.20PG1 + 40.0 $dc2 / dPG2 = 0.25PG2 + 30.0$ Assume that both unites are operating at all times and total load varies from 40 MW to 250 MW and the maximum and minimum loads on each unit are to be 125 MW and 20 MW respectively. How will the load be shared between the unites as the system varies over full range? What are their plant incremental costs?	3	L3
7	The fuel cost of two units is given by following equations. $C_1 = 350 + 7.20P_{G1} + 0.0040 P_{G1}^2$ Rs/ hr	3	L3

	$\begin{aligned} C_2 &= 500 + 7.30 P_{G2} + 0.0025 P_{G2}^2 & \text{Rs/hr} \\ C_3 &= 600 + 6.74 P_{G3} + 0.0030 P_{G3}^2 & \text{Rs/hr} \\ \text{Where } P_{G1} \text{ , } P_{G2} \text{ and } P_{G3} \text{ are power MW. For the load of 450MW} \\ \text{obtain saving in cost per hour by comparing the cost of production on equal sharing basis and equal incremental cost basis.} \end{aligned}$		
8	Two bus system is shown below. If 100 MW is transmitted from plant 1 to the load a transmission loss of 10 MW is incurred. Find the required generation for each plant and the power received by the load when system lambda is Rs 25/MWh. The incremental fuel costs of two are given by dc1 / dPG1 = 0.020PG1 + 16.0 Rs /MWh. dc2 / dPG2 = 0.040PG2 + 20.0 Rs /MWh.	3	L3
9	For the given system obtain B coefficients $ \begin{array}{c} & I_{1} \\ & I_{2} \\ & I_{1} \\ & I_{2} \\ & I_{1} \\ & I_{2} \\ & $	3	L3

Course Code and Title: 18EE71 POWER SYSTEM ANALYSIS – 2	
Module : 5 Symmetrical Fault Analysis and Power System Stability	Planned Hours: 10

Learning Outcomes:

At the end of the topic student should be able to:

SI.No	TLO's	CO's	ΒL
1	Explain how to obtain bus impedance matrix for the use in short circuit studies on power systems.	iv	L2
2	Obtain Z _{Bus} of a given system using step by step build algorithm.	iv	L3
3	Obtain swing equation and analyze stability of the system	V	L3
4	Solve the numerical problems related to swing equation	V	L3

Lesson Schedule

Class No. Portion covered per hour

- 1. Introduction to the Algorithm for short circuit studies,,ZBus formation by step by step building algorithm without mutual coupling between the elements by addition of link .
- 2. ZBus by Zbuild Technique addition of branch (continuation)
- 3. ZBus by Zbuild Technique (continuation)
- 4. ZBus by Zbuild Technique (continuation and completion)
- 5. Numerical problem solution on ZBus formation
- 6. Numerical problem solution on ZBus formation
- 7. Solution of swing equation by Point by Point method
- 8. Numerical problem solution using point by point method
- 9. Numerical problem solution
- 10. Numerical problem solution

SI.No	Questions	TLO	ΒL
1	Explain the necessity of short circuit study in power system analysis	1	L1
2	Explain the method to obtain Z_{Bus} by Y_{Bus} inversion, and current injection	1	L2
3	Explain the method to obtain Z _{Bus} by current injection	1	L2
4	Explain Zbuild algorithm for the addition of a branch with possible sub cases.	2	L2
5	Explain Zbuild algorithm for the addition of a link with possible sub cases.	2	L2
6	Explain Zbuild algorithm for the deletion of a branch/ link		L2
7	Define stability and classify with sub types.	3	L1
8	List the factor affecting transient stability and method to overcome the same.	3	L2
9	Explain the analysis of transient stability using point by point method.	3	L3
10	Explain the analysis of transient stability using Runhe Kutta method	3	L3
11	The swing equation is given by $\frac{d\delta}{dt} = \omega - 377 \text{ rad/sec} ; \frac{d\omega}{dt} = 32[1 - 0.4 \sin \delta]$ At t=0.0 sec, ω =377 rad/sec and delta=0,523 rad. Determine the values of ω and delta at 0.1 sec. Assume Delta t= 0.1 sec	4	L3

K. L. E. Society's K. L. E. Institute of Technology, Hubballi Dept of Electrical and Electronics Engg. **First Internal Assessment Test** Sem/Div: 7 EEE

i

16

Date: Time: 1 Hr 15 min Max Marks: 40

Sub: POWER SYSTEM ANALYSIS - 2 Sub Code: 18EE71 Faculty Incharge: M G Hudedmani

Note: 1) Answer any TWO questions

2) All questions carry equal marks

Q No	Sub Qtn	Question	Marks	BL	СО
1	a	What is all incidence matrix A (Element - node). Explain the mechanism to obtain the bus incidence matrix A for the graph shown below Fig 1a	10	L2	i

Fig 1 a

order to carry out load flow analysis in power system

b	Explain the Singular transformation method of formation of Ybus with general	10	L2	i
	notations.			
а	Define and justify the necessity of Load flow study and classify the buses in	10	L2	ii

Using G-S load flow procedure determine the bus voltages at the end of first 10 L3 ii b iteration. All the line data's are in impedance form.

3 10 L2 а Obtain Y_{bus} by singular transformation method for the system having the data as shown in the table. Take bus 6 as reference

Line No.	1	2	3	4	5	6	7
Bus code p-q	1-6	2-6	2-5	1-3	3-4	4-5	3-6
Impedance (Z _{pq}) in pu	0.05	0.0286	0.1	0.2	0.05	0.1	0.04

b Obtain the solution of nonlinear static load flow equations by Gauss seidel 10 L2 ii technique with the help of flow chart

K. L. E. Society's K. L. E. Institute of Technology, Hubballi Dept of Electrical and Electronics Engg. Second Internal Assessment Test Sem/Div: 7 EEE

Date: Time: 1 Hr 15 min Max Marks: 40

Sub: POWER SYSTEM ANALYSIS – 2	
Sub Code: 18EE71	
Faculty Incharge: M G Hudedmani	

Note: 1) Answer any TWO questions 2) All questions carry equal marks

Q No	Sub Qtn	Question	Marks	BL	CO
	a	With the help of Flow chart explain NRLF load flow method in brief.	10	L1	ii
	b	Using NR load flow procedure determine the bus voltages at the end of			

b Using NK load flow procedure determine the bus voltages at the end first iteration. Take flat start and assume suitable missing data

		Ch	Line dat	a table				
1.		bussicole hus	Line from bus to bus	R in Pv	X in Pv			
			1-2	0.05	0.15	10	L3	ii
			1-3	0.10	0.30			
			2-3	0.15	0.45			
			2-4	0.10	0.30			
		BUS(3) BUS(4)	3-4	0.05	0.15			
	а	List the dat required for the Load f	low study			10	L2	ii
2.	b	Define and explain Jacobian elemen diagonal elements of Jacobian mat	nts and importan rices.	ice. Der	ive the	10	L2	ii
3.	a	With the help of standard features	compare Load H	low me	thods.	10	L2	ii
	b	Obtain the solutions of voltage mag	nitude and delta	for the	buses	10	L3	ii
		Slack Bus		Load	Bus • 3			

PV Bus

and slack bus power after one iteration using Gauss-Seidel method

Buscode	Gene	ration	lo	ad
	MW(pu)	MVAR(pu)	MW(pu)	MVAR(pu)
1			0	0
2	0.50	0.30	3.056	1.402
3	0	0	1.386	0.452

Bus cod	e	Bus Voltage
1(s	lack)	1.05+j0
2	PV	1+j0
3	PQ	1+j0

Line Data				
p-q	Ypq (mho)			
1-2	10-j 20			
1-3	10-j 30			
2-3	16-j 32			

Sem/Div: 7 EEE	
Sub: POWER SYSTEM ANALYSIS – 2	Date:
Sub Code: 18EE71	Time: 1 Hr 15 min
Faculty Incharge: M G Hudedmani	Max Marks: 40

K. L. E. Society's K. L. E. Institute of Technology, Hubballi Dept of Electrical and Electronics Engg. Third Internal Assessment Test

Note: 1) Answer any TWO questions

2) All questions carry equal marks

Q No	Sub Qtn	Question	Marks	BL	CO
1.	a	Explain penalty factor, approximate penalty factors and interpretation of penalty factor.	5	L1	iii
	b	What are B coefficients ? derive necessary equations for them (Krons Model)	8	L2	iii
		$IC1 = 50 + 5P_{G1}$ Rs/ MWhr			
	с	$IC2 = 40 + 10P_{G2}$ Rs/ MWhr The incremental fuel cost functions of two units are as shown above. Obtain economic scheduling for a demand of 120MW and cost of production at each unit as well as total cost.	7	L3	iii
2.	a	Explain the method of formation of \mathbf{Z}_{BUS} by step by step method	10	L2	iv
	b	Obtain Z_{BUS} by Z_{build} technique take ' O' as reference bus			
		and the second s	10	L3	iv

3.	a	Explain the Point by point method of solution of swing equation with suitable representations.	10	L2	v
	b	Explain the Runge Kutta method of solution of swing equation with suitable representations.	10	L2	v

Pzi Bus

8

8

Model Question Paper

Subject: Power System Analysis – 2 Su Q. No. Question

Subject Code: 18EE71 Marks 8

1. a

What is all incidence matrix A (Element - node). Explain the mechanism to obtain the bus incidence matrix A for the graph shown below Fig 1a

- b Define a primitive network. Formulate Y_{Bus} by singular transformation 8 method. Or
- 2 a Determine Y_{Bus} by singular transformation for the system with data as below:

Element No.	1	2	3	4	5
Bus Code p-q	0-1	0-2	2-3	3-0	2-0
Self-admittance in pu	1.4	1.6	2.4	2.0	1.8

b Define and explain the following:
i) Oriented graph ii) Tree iii) Co-tree iv) Basic cut-sets v) Basic loops vi) Incidence matrices.

Or

- 3a Develop the Gauss-Seidel load flow model for a power system with a slack bus and (n-1) number of PQ buses. Write the flow chart of the algorithm.
- b. In a two bus system shown in Fig. Q3(b), bus 1 is slack bus with $V_1=1.0 \ge 0$ pu and bus 2 is a load bus with P = 100 MW, Q = 50 MVar. The line impedance is (0.12+j0.16) pu on a base of 100 MVA. Using NR load flow method compute $|V_2|$ and δ_2 after one iteration.

Or

- 4.a Explain the algorithm with fast decoupled load flow analysis, clearly stating 8 all the assumptions made.
- In the power system shown in Fig. Q1(b), line 1-2 has the series impedance
 of (0.04+j0.12) pu with negligible line charging. The generation and load data is given in the table.

Bus No.	Туре	Generation	Load (pu)		
1	Slack	-	-	-	-
2	PV	0.3	-	0.6	0.2

The slack bus voltage is (1+j0). The voltage magnitude at bus 2 is to be maintained at 1.05 pu and the generator at this bus has Q-generation limits between 0 and 0.5 pu. With (1+j0) pu initial voltage at bus 2, determine its voltage at the end of first iteration, using GS load flow model.

8

8

- 5.a. With the help of a flow chart and equations explain the Newton Raphson method for load flow analysis with P-Q and P-V buses
- Discus briefly the significance and properties of Jacobian Matrix of the Newton b. 8 Raphson method for load flow analysis.

Or

- 6.a. Compare the load flow methods with standard features
- 8 b. In the two-bus system shown in Figure , bus 1 is a slack bus with $V_1=1.0$ 0 pu. A load of 150MW and 50 Mvar is taken from bus 2. The line admittance isY₁₂= 10 -73.74⁰ pu on a **base of 100 MVA**. Calculate the value of **voltage** and delta value for bus 2 after one iteration. Use NRLF.

Fig Q6 (b)

- 7.a Draw and explain the following:
 - Input-Output curve i)
 - ii) Cost Curve
 - Incremental cost curve iii)
 - v) Heat rate curve
- b. The incremental fuel costs in Rs/MWh for a plant consisting of two units 8 are

$$\frac{\mathrm{dF}_{1}}{\mathrm{dP}_{G1}} = 0.1P_{G1} + 20, \ \frac{\mathrm{dF}_{2}}{\mathrm{dP}_{G2}} = 0.12P_{G2} + 15.$$

Assume that both units are operating at all times.

Determine

i) The most economical division of load between the generators for a constant load of 300 MW.

ii) The saving in Rs./ day obtained compared to equal load sharing between them.

Or

8.a. Derive the coordination equations for economic load dispatch in a thermal 8 power system with the consideration of transmission losses. b. Describe dynamic programming method for computation of optimal Unit 8 Commitment. 9.a. Derive the generalized algorithm for finding the elements of bus impedance 8 matrix when a link is added. Explain Runge Kutta method of solving swing equation. b. 8 Or 10.a. Explain point by point method of solving swing equation. 8 b. Form the Z_{Bus} for the power system shown in Fig. Q10 (b) using Z_{Bus} 8 building algorithm. Select ground node as reference. The line reactances are in pu. 20.05

Fig Q10 b